So, if choke occurs later, the compression could continue at higher wheel speed. The speed of sound increases in denser mediums, the factor of which I do not know.
I'm not familiar enough with vorticity other than I can see that disrupting of either the boundary layer or added sonic turbulance would lower compression by preventing laminar flow, and add heat to that air (turbulance) without compression. For the layman, is that what you are saying Adrian?
Choke occurs when the small diameter (inlet) of the impeller reaches sonic speeds. You think that the added density with water injection will slow the wheel to under Mach1, yes? Or, that the speed of sound will increase, permitting extension (more wheel speed) of compression until choke?
|